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I. INTRODUCTION

Electromagnetic waves propagating along a transmission line are scattered
by bends in the line. The amount of scattering depends on the shapes and sizes
of the bends. At sufficiently low frequencies, when the wavelengths greatly
exceed the bend dimensions, the scattering effect of each bend can be represented
by equivalent lumped network elements loaded onto the transmission line at the
location of the bend.

Figure 1 shows a bend in an otherwise straight parallel-wire transmission
line and its representation by an equivalent symmetrical T section network. The
bend is formed when the two parallel wires are deflected identically through an
angle a . More precisely, the vertical plane in Figure 1 defined by the two
parallel wires on one side of the bend intersects the vertical plane defined by
the wires on the other side at an angle w - a ; the line of intersection is
normal to the two parallel horizontal planes containing each of the wires
individually.

The objective of the present effort is to determine the lumped inductance
Ld and the capacitance Cd appearing in the equivalent circuit representation
of the bend in Figure 1. These lumped elements can bs calculated from a pair of
quasi-electrostatic and quasi-magnetostatic boundary-value problems for the bend
geometry.

The analysis of the bent two-wire transmission line is relevant to the EMP
internal~coupling problem of an aircraft. A cable running parallel to a metallic
wall or floor in the aircraft's interior is essentially a two-wire transmission
line on account of the electrical image. A quantitative knowledge of the bend
inductance and capacitance will enable one to estimate the effect of a bend on
the EMP propagation characteristics of the cable.

The bent parallel-wire transmission line has previously been studied by
Tomiyasu [1] and King [2]. These authors limited their investigations to the
abrupt V-shaped bend. The present work improves on their results and, at the
same time, extends their analysis to the more general case of a smooth gradual
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Figure 1.

A bend in a parallel-wire transmission line
and its equivalent circuit representation.




bend. Specifically, the bend is modeled here by a circular arc with a finite
radius. The abrupt bend is recovered in the zero-radius limit. The circular
arc is clearly a more realistic model of a cable bend. The calculation shows

that the abrupt bend model becomes unreliable when the bend angle a 1is close
to w .




II. GEOMETRY OF THE PROBLEM

Figure 2 shows a model of a bend in an infinitely-long two-wire transmission
line. The line consists of two identical parallel conducting cylinders. The
radius of each cylinder is a ; the separation of their center lines is 2b .

When the model is applied to the situation of a single conductor over a conducting
ground, the parameter b becomes the height of the conductor center line above
ground. In the following it will be assumed that the conductors are thin wires

so that b 1is much greater than a .

The bend in each wire is modeled by a circular arc connecting the two semi-
infinite straight sections of the wire. The radius of the arc is R ; the angle
of the arc is the bend angle a . The two points on the center line at which

the circular arc is joined to the straight sections are located at (xo » tyo 5

tb) with
x, = R sec (%) - R cos (%) (1)

R sin (%) (2)

The + sign of b refers to the upper and lower wires, respectively. In the
limit of vanishingly small R , both X, and tend to zero. The bend
geometry degenerates to that of an abrupt V-shaped bend at the coordinate
origin.

The total inductance and capacitance of an infinite transmission line are

- infinite quantities. But the bend inductance L, and the bend capacitance Cd
S

_ d
are finite since they stem from localized deviations in the line geometry. They

are functions of the geometrical parameters R , a , a and b .
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III. DERIVATION OF THE INDUCTANCE INTEGRAL

Let a total current I flow down one wire of the bent two-wire transmission
line in Figure 2 and return by way of the other. If the wires are thin, the
current can be assumed to distribute itself uniformly in the wire interior.

Then the external inductance can be written down exactly in the form of a two-

dimensional integral. The internal inductance is negligible.

One first writes down the vector potential at a general point (x,y,z)

exterior to the wires

w1 '
A(x,y,2) = 2= f dy'<d—x- e+ éy)

1 1

X

(3)

Jx-x") 2+ (y-y" ) 24 (z-5)%  Six-x") 24 (y-y") 24 (z4b) 2

where x' and y' are the coordinates of the center line of a wire. The total

magnetic flux passing between the two wires due to the currents in the wires is
ziven by

o = fg-@ = J (V x A)+dS = } A-dr (4)

where the line integral goes around the perimeter of the area bounded by the
two wires. A general expression for the total inductance L , defined as the
ratio ¢/I , can be obtained by combining equations (3) and (4):

-] -
u ]
i 2D o[ dx dx
L o I dy[dy (—dy ay" + 1)
L AT,

1 1

/(;' )2+(y-y' )2+-2 v/(:-x' )2+(y-y' ) 2+(2b—a) .




r

which is symmetric in the pairs (x,y) and (x',y').

To evaluate the integral (5) one must first supply from the bend geometry
the functional relation between x and y , and similarly between x' and y'

in the form

x=£f(y) , x' = f(y") (6)

The relation describes the locus of the center line of a wire. For the case of

the circular bend in Figure 2, one has

R sec (%)- RZ-y? Iyl <y,
x=£(y) = @
ly|tan (%) Iyl > ¥,

where : 2 is defined by (2). For the case of the abrupt bend, one has

a
X = fz(y) = lyltan (E) (8)
For the case of the straight transmission line, one has

x = £5(y) = 0 ©

By evaluating the integral (5) with the three different functional
expressions fl s fz and f3 in (7), (8) and (9), one obtains three induc-
tances Ll ’ L2 and L3 . They are respectively the total inductance of a
line with a circular bend, an abrupt bend, and no bend. All three are linearly
divergent quantities. However, the equivalent inductance Ld of the circular
bend given by the difference
- L

Ld“- L (10)

1

3




is finite. In the following two sections the calculatiocn of Ld will proceed
in two steps. In Section IV one calculates the inductance difference

, Ly =L, - L, (11)

This quantity is the equivalent inductance of an abrupt bend. In Section V one

calculates the difference

L; = Ll - L2 (12)

due to the deviation of a circular bend from an abrupt bend. The desired circular
bend inductance Ld is then given by the sum

P‘ ; L, =Ly +1j . 13)
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IV. INDUCTANCE OF AN ABRUPT CABLE BEND

The equivalent inductance L:i of an abrupt bend through an angle o in
a two-wire transmission line is defined by expression (11). The two inductance
integrals L2 and L3 are explicitly given by

LZ-:—:l:dyI;Y'(1+A2 Tg%r)(/k i

2(lyl-ly"' D% + -y"?% + a

2

» : ) (14)
Al(lyl-ly' 2 + r-y")2 + 2b-a)?

and o ™

U
L3 - 2—:[ ddey'( 4 - - ) (15)

Ay + a2 Jiy=y")? + (2b-0)°

where
A = tan (2) (16)

One can show that the contribution to 1.2 from those regions of integration

in which y and y' are of the same sign exactly cancel the corresponding
contribution to L3 « The nonzero contribution to I':l comes from the remaining
regions in which y and y' are of opposite signs. In physical terms this
result means that the self inductances of the two semi-infinite straight sections
of the bent transmisseion line are unaffected by the bend; the bend inductance

l."i is entirely due to the change in the mutual inductance of the two semi-
infinite sections. This change is given by

Ly = FQ1) - F(0) an”




e —

u o0
) = 20 [ay fody'( 2
Aliey)? + (5-yh? + o

0 -0

4 1 ) (18)
¢§2(y+y.)2 + (y-y')2 + (2b-a)2

The integral F(A) can be worked out analytically by the following device.
first perform a change of integration variables:

u=y-y', v=y+y' (19)

The corresponding change in the integration is

0 ® su
Ely I dy' » I du Idv (20)

0 =-u

(T

Next make the substitution v = ut and interchange the order of integration.
The two ensuing integrations, first over u and thenover t , are both
elementary. The result is

2u R e
FO) = -T‘l(b-.)lxA tan ) (21)

Using definitions (16) and (17), one arrives at the simple explicit result

2u  (b-a)

l.‘.'1 = (a cot a - 1) (22)

This is the exacr formula for the equivalent inductance of an abrupt cable bend
within the thin-wire assumption. By contrast, the more complicated expression
given by King {3] is only approximate.

12




A plot of L& versus a 1s shown in Figure 3. One sees that the bend

* inductance is a negative quantity. Its magnitude increases sharply as the
} ; ; bend approaches a hair-pin bend (a = 7).
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V. INDUCTANCE OF A CIRCULAR CABLE BEND

The change Lﬁ in the equivalent inductance when one goes from an abrupt
cable bend to a smooth cable bend modeled by a circular arc is given by
expression (12). The inductance L1 is defined by (5) with x = fl(y) and
x' = £1(y') 3 L, 1is similarly defined with x = fz(y) and x' = fz(y').
From equations (7) and (8) it is clear that fl(y) and £,(y) are identical
for lyI e S Consequently the nonzero contributions to Lg come from
regions of integration in which either y or y' or both lie within the
interval (—y° ’ yo). On the y-y' plane these regions form a cross, as
shown in Figure 4. The contributions to Lg consist of a part from the
central square of the cross and a part from the four semi-infinite strips
making up the four branches:

Lg L"(square) + L"(strips) (23)

These partial contributions are expressible as

L;(square) = G1 - G2

(24)

Ly(strips) = G, - G

3 4

where the quantities G1 s G2 » G

3 and GA are double integrals given
explicitly by

1
e B v/(R -v") ®%-y'?) /«9?- Ry % & gy')? + a2

1

pes (25)
2
Sy - ﬁ-yj) + (-y")? + (2b-a)?
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yo yO
u 1]
Gz'z—:fdyfdy'(l*"z]'%"]') 1
% % A%(lyl-ly' 12 + (7=y")? + o2
- L (26)
v/’\z(lﬂ-‘ly'l)z + (y-:»")2 + ‘(2b-a)2
Y,
2u_ = (° ;
c3-—“2[dyldy' L 4 1 -
yo -yo ',{2_),.2 /(J\y - R/lﬂz + Az-y'z) + (y=y') " + az
- S - (27)
Yy - R/{‘I-A + JG -y'z) + (y—y')2 + (2b-a)2
y
2u o 2
G, = =2 dyIdy' (1*'?;;) A
Y Y, Al-ly' 2 + (5-y")2 + &
- - (28)

Az(y-lfl)2 + (y—y')2 + (2»-«)2

All four integrals are finite. The contribution Lg (square) is the shift in
the self inductance of the bent section between : and 2 when the bend
geometry is changed from an abrupt bend to a smooth bend. The contribution
L: (strips) is the corresponding shift in the mutual inductance between the
bent section and the two adjoining semi-infinite straight sectionms.

One integration of each of the four double integrals can be carried out.
In the case of Gl » it is convenient to first introduce angle variables ¢
and @' such that

y = R sin ¢, y' = R sin ¢' (29)

17




as well as their difference u and sum v :
u=¢-9', v=g +9' (30)
The v-integration can at once be performed, with the following result:

uR2

" 1
Gl =2 Idu(a - u)cos u(
™
0 2

/ZP. + az - 2R2coa u

& 1 ) (31)
/282 + (2b-2)% - 2R%cos u

In the case of G2 , one introduces the difference u and sum v :
uey~-y , v=y+y' (32)

and then integrates over one of them. The result reads

2 Yo
u 2 1 1
G, = —2 1+ )Ldn(y -u)( —~ - )
2 " o
v/(1+).)2u2 + .2 v/(l-i-Az)u2 + (2!:;-3)2
%
Yo 2
+ -y (1-2%) dv[0(2y° -v, v) = &(v,v)] (33)
0
where
u + v/lzvz + “2 + ‘2 (34)

¢(u,v) = 2n
i u-l-/kv +u +(2b-a)

In the cases of 63 and G,. , one can carry out the y-integration directly
without any change of variables, obtaining thereby the expressions




Yy
(o]
2u 1
e J ay' 1+ —-*L—)m/mz R T (35)
y A 42 o2
1+) —yo -y
y
(o]
2u 2_, j
G = —2_1 ay' 1+ 2% Jearly'] L v (36)
5.8 J[__E ly'|
1+ -y

o

where

/&+A27/Q1y°-x)2 + (yo--y)2 + (2b-a)2 + (1+12)yo -Ax -y
¥(x,y) = &n (37)

¢€+A2 JQAyo-x)z + (yo-y)2 + a2 + (1+A2)yn -Ax -y

The remaining integration in G2 and G4 can be performed exactly.
However, the explicit integration produces such a proliferation of terms that
the results are practically useless. The integrals G1 and G3 in (31) and
(35) contain parts which are essentially integrals of incomplete elliptic
integrals. They are beyond the limits of the art of analytical integratiom.
One must ultimately resort to numerical integration for their evaluation. For

; . numerical purposes, it is more advantageous to retain all four integrals in

4 the forms (31), (33), (35) and (36).

: The equivalent inductance Ld of a smooth bend consisting of a circular
arc of radius R and angle a 1is therefore given by

Ld - L& + G1 - G2 + 63 - 64 (38)

where L& is the equivalent inductance of an abrupt bend of angle a as given

’ in (22). The four G integrals are evaluated numerically for the cases b = 10a
and R = 2b and 4b . The values of Ld are plotted versus a in Figure 5.
The inductance of an abrupt bend (R = 0) is also shown for comparison. It is
seen that the dependence of Ld on the bend radius R 1is very pronounced
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for large bend angle a . At the chosen values of the parameters the abrupt

bend can be said to approximate the smooth bend only for o« less than about
40°.
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VI. INTEGRAL-EQUATION FORMULATION OF THE CAPACITANCE PROBLEM

Consider the bent two-wire transmission line in the coordinate system in
Figure 2. Let the upper wire at z = b be charged to a potential Vo/2 , and
the lower wire at z = -b to a potential —VO/Z . The potential difference
between the two wires is therefore Vo . The charge densities per unit length
on the upper and lower wires will be denoted by *o0 , respectively. It will
be assumed that the two wires are thin, so that the wire radius is much smaller
than the wire’ separation. One can then consider the charges on the wires as
being concentrated on the center lines of the wires; and o can be expressed

as a function of the y-coordinate alonme.

At a general point (x,y,z) exterior to the two wires the total electrostatic
potential due to the wires is obtained by summing up the contributions from all

the charge elements along the center lines:

1

-]
S | , ds' v
Vx,y,2) e, J dy" &r 97

= /Qx-x’)z + (y-y')2 + (z--b)2

% 1 (39)
Jx-x")? + (3-y")2 + (z+b)?

In the formula s' is the arc length measured along the center line of a wire,

so that

@ ey

Strictly speaking, the charge density o(y') 1is to be determined by requiring
that V reduce to iVO/Z on the entire surfaces of the upper and lower wires,

respectively. However, to be consistent with the thin-wire assumption inherent

22
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in formula (39), one can apply the boundary condition only along a line on the
surface of each wire. This line will be chosen to be at z = b-a on the
upper wire, and at z = -(b-a) on the lower wire. An integral equation for
o(y') results:

ook s et o 1
o 2me I e dy' Al B 5 5 5
ci /(x-x') + (y-y')" 4+ a
= : et et (41)

Jax")? + (3-y")? + (2b-2)°
The integral equation (41) is to be solved under a specified functional

relation between x and y , and similarly between x' and y' . This relation

takes the form
x = £(y) , x' = £(y") (42)

and describes the center line of a wire. Three forms of f£(y) will be considered
in the following sections. For the line with a circular bend shown in Figure 2,

one has
R sec(%) - V‘Rz-'y2 [yl < b
x = £ (y) = (43)
[vlesn ($) Il > 5,
where
a
Y. R sin (-2-) (44)

One also considers the abrupt V-shaped bend obtained in the limit as R tends

to zero. The functional relation for this case is

b




x=£,(y) = lyltnn(%) (45)

Finally, for a straight uniform line with no bend, one has

x = f3(y) =0 (46)




VII. VARIATIONAL REPRESENTATION OF THE CAPACITANCE

It is possible to calculate the capacitance of the two-wire transmission
line without solving explicitly the integral equation (41). The way to go about
this is to phrase the capacitance calculacion as an eigenvalue problem. From
well-known results in the calculus of variations, a variational principle for
the eigenvalue can be established. It can be applied to obtain an estimate
of the capacitance with a judicious choice of the trial function.

Let Q denote the total charge on the upper wire. It is an infinite
quantity and can be expressed as a line integral of the line charge density

g 3

Q= rdy' §;~: a(y') 47)

-0

Q 1s directly proportional to the potential difference V° » the constant of

proportionality being the capacitance C :

Q=0v, (48)

Using equations (47) and (48), one can eliminate V° from the integral equation
(41), which then becomes

L] L]
clrdy' %37 a(y') = J‘dy' g% a(y')K(y,y") -y tw (49)

The kernel K(y,y') 1is defined by

R(y,y') = 3 x - . ! (50)

TE
Jxx)2 + (3322 + a°  Lix=x")2 + (3-y")> + (2b-a)>

where x and x' are related to y and y' through equation (42).
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Equation (49) is linear and homogeneous, with the reciprocal of the capaci-
tance 1/C playing the role of an eigenvalue. A variational representation of
the eigenvalue for an integral equation of the type (49) is well known [4] and
taﬂes the form

Iody ['dy' :; g; o (y)K(y,y")o(y")

_é_- & -0 -0 (51)
ds d s
[aﬁy f-;y' 3y ay’ 0"

By "variational representation" is meant that 1/C is a functional on the space

of trial charge density functions o , and that its value attains an absolute
minimum at the exact solution of (49). This minimum corresponds to the exact
value of the capacitance. If a trial charge density function differing from
the exact solution by a small amount 6&¢ 1is inserted in (51), the error
incurred in the approximate value of the capacitance so obtained is only of
order (So)2 . Consequently an evaluation of expression (51), even with a
very crude trial function, can yield a good estimate of the capacitance.

On physical grounds the charge density per unit length of the two-wire
transmission line is uniform except in the vicinity of the bend. For a very
long line with a length greatly exceeding the bend dimensions a good trial
function is therefore

o(y) = constant (52)

With this simple choice expression (51) becomes

f" ]-dy' ds “' a8 x(y.y")

Q=
l

(53)
I.dy dy I.dy
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which depends only on the geometry of the bend. By applying to the kernel
K(y,y') 1in (50) the three functional relations £, , £ and f3 defined in
equations (43), (45) and (46), one obtains three kernels Ky » Kz and K3 .
These, when inserted into formula (53), generate three capacitances C1 A C2
and C3 . They are, respectively, the total capacitance of a two-wire
transmission line with a circular bend, an abrupt bend and no bend.

In the following two sections the equivalent capacitances of an abrupt
bend and a circular bend are calculated from formula (53). In Section VIII the

equivalent capacitance of an abrupt bend, denoted by Cé and defined as the
difference

Cqg=C-Cy (54)

is evaluated in closed form. In Section IXthe difference Cg between the
circular bend capacitance and the abrupt bend capacitance, given by

cj=¢c, -¢, ' (55)

is expressed in the form of one-dimensional integrals ready for computation.
The equivalent capacitance Cd of the circular bend is then obtained as

C.=¢C

4 3 - c3 = C' +C" (56)

d d
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VIII. CAPACITANCE OF AN ABRUPT CABLE BEND

Consider a two-wire transmission line with an abrupt bend through an angle
a . This bend can be regarded as the limit of the circular bend in Figure 2
when the bend radius R tends to zero. Let the transmission line be of finite
length initially and stretch from y =D to y = -D . Eventually the constant
D will be allowed to tend to infinity. The total capacitance C2 of this line
is calculable from formula (53):

ds!
-c-l- = J I dy' dyz d,% K, (y,y') (57)

D

Nloh‘

The subscript 2 will everywhere refer to the line with an abrupt bend. The
kernel K2 is given by

1 ‘ 1
K,(y,y') =
2 Zﬂe /2 g 2 ; 2
Ayl=ly' D+ -y + a

2

- 1 58)

'/XZ(IYI-IY'I)Z + (y-y")2 + (2b-a)>

with
A = tan (‘—;-) (59)
82 is the total length of the line between y =D and y = -D :
D ds!
sz-de'E;%-zn/1+x2 (60)
-D =

since, by (40) and (45),




Now consider a straight two-wire transmission line of the same total length.
That is, its length S3 is given by

S, =8, =2p7/1 + 2% 62)

3 2

where the subscript 3 refers to the straight transmission line. This line can
be taken to lie parallel to the y-axis in Figure 2, and to stretch between

y=D/1+A" and y = -DV1 + 1" . According to formula (53), its total capa-
citance C3 is

n/— p/in2

a2
<, -, —2' I dy' Ky (y,y") (63)
/il o
where
Ry(,3") = 3n - - - ©4)

2

'/(;'-}")2 + a f(y—y')z + (2b-a)2

A simple change of variables reduces (63) to the form

2
& -%"—[dyfdy K, 1’y , /ity 65)

3 83
Substituting formulas (57) and (65) into the identity

1 1
C. - C. = C.C = A ; ©6)
2 3 23( 3 CZ)

and making use of relations (61) and (62), one obtains an expression for the
equivalent capacitance c& of an abrupt cable bend defined in (54):




-

2
C,C,(1+A°) (D (D
cy = ﬂi____ I dy I dy' [x3(/1+x2 y, 1’y - Kz(y,y')] 67)
s
3 =D -D

When the total length of the line is allowed to increase, the effect of the bend
on the total capacitance of the line becomes negligible. The total capacitance
approaches the product of the line length and the constant capacitance per unit
length of the uniform line. In mathematical terms, one has

Lim C, = Cy = xS, (68)
D>
where
1l'€o
K = b > a (69)
(?b
n s

is the well-known capacitance per unit length of the uniform two-wire transmission
line. Therefore in the limit D-+«, formula (67) goes over to the desired expres-
sion for the equivalent capacitance of an abrupt bend in an infinite two-wire
transmission line:

cpw%ﬂ%fwrw{gmﬂzy.&Myw-gmwﬂ (70)

-g0 -

It is easy to see from (58) and (64) that the integrand in (70) vanishes
identically whenever y and y' are of the same sign. The nonzero contributions

to ca can be rearranged as follows:

%-?w»?o) (71)




. 2,1,,2 0
F(x)-ﬁ—%"—lrdy I ay' L
° 0 = \Algwn?+ gyl + et

- L 72)

/xz(y*-y')z + (:r-y')2 + (zb--a)2

The integral is the same as that appearing in expression (18) of Section IV,
and can be evaluated analytically by the method described therein. The result is

22 (b-a) 142°

me A
o

-1

Fr) = tan A (73)

Combining expressions (59), (69), (71) and (73), one obtains the equivalent
capacitance of an abrupt bend in the simple formula

27e_(b-a)
Cc = =—2
d [ (Zb) 2
in|l—
a

For completeness one quotes here the associated equivalent inductance Lé of.
the abrupt bend derived in equation (22) of Section IV:

(1 - a csc a) (74)

2u_(b-a)
L' = —2
d "

(a cot a = 1) (75)

The expression (74) for the bend capacitance Cc'l is evaluated for the case
b = 10a , and plotted versus the bend angle a in Figure 6. The equivalent
capacitance of an abrupt cable bend has previously been calculated by Tomiyasu
[1] and King [5] using a different approximate method. Expression (74) agrees

with their result to within a few percent. It is, however, simpler in form and

applies to a wider range of the bend angle a .
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IX. CAPACITANCE OF A CIRCULAR CABLE BEND

The equivalent capacitance Cd of a circular cable bend is the sum of the
equivalent capacitance C& of an abrupt bend calculated in Section VIII and the

correction term Cg defined in equation (55). The evaluation of c; is under-

taken in this section.
Applying formula (53) successively to the two transmission lines with the
circular and abrupt bends and taking the difference of the two resulting

expressions, one obtains

sg si
T oy w (76)
3 9

On the left-hand side, S

lines:

1 and S2 are the total lengths of the two transmission

dsi dsi
= bk - G |
sl J‘dy Y' ’ SZ rdy dy' @7)

They are both linearly divergent quantities. The right-hand side of (76) is a
two-dimensional integral:

ds da d91 dsl
W= J‘dy rdy dy K (y,y') - & a‘;rl( (y,y') (78)

The kernel Kz(y.y') has been written out explicitly in equation (58). The
kernel K,(y,y') is given by

1 1
Kl(YoY') e Z"GO

Ae ) - £,001 + Gyl + o
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= ! (79)

e, - £,6M1% + -yH + @b-a)’

with fl(y) defined by (43). The two quantities s, and s, in (78) are arc
lengths along the transmission lines. By (40) one obtains

ds! ds)
= A+ 5607, Fai+n? (80)

y dy'

The left-hand side of (76) is the difference of two infinite quantities.
Its value is nevertheless finite, and is related to the capacitance difference

Cl'-c

4 y» c2 . Introducing the relations

C,=C. -C"

e Bl ¥ RS

= S. + AS (81)

where C; and AS are finite and C1 and S

g 0 5,
wl-wdles o C; + 2 o AS (82) |
2 1 1 1

The ratio C1/S1 in (82) is simply the capacitance per unit length of the
infinite bent transmission line. It is equal to x defined in (69) for the

1 are infinite, one finds that

S

INN

(2]

uniform line. Furthermore AS 1is the difference in the arc length between
an abrupt bend and a circular bend. From Figure 2 one can immediately write
down

AS = R(2\ = a) (83)

Substituting (82) and (83) into (76), one finally obtains an expression for '

the capacitance correction term:

C; = :ZW - 2kR(2\ - a) (84)




It remains to evaluate the two-dimemsional integral W appearing in (84)
and defined in (78). One easily sees from the definition of fl(y) in (43)
that the integrand in (78) vanishes identically whenever both y and y' 1lie
outside the interval (-yo,yo) « This result is a reflection of the fact that
the two differently-bent transmission lines coincide outside the bent sections.
Consequently the nonzero contributions to the integral W come only from a
certain cross-shaped region on the y-y' plane, as shown in Figure 4. The
total contributions consist of a part from the central square of the cross,

and a part from the four semi-infinite strips forming the four limbs:
W = W(square) + W(strips) @85)
Each of the two parts can be further subdivided as follows:

W(square) = G. - G

1 2
S (86)
W(strips) = G3 - G“
o The four G's are two-dimensional integrals defined explicitly as follows:
¥ y
2 ¢’o o
-~ A
Gl-;';'e[dyjdy' 21 —
s e g 5 /%rz(ly|-|y'|) Fiy=r') *a
. 1 (87)
A2(lyl-ly' D2 + ty-y")? + (2b-a)?
o R2 a/2 ra/2 : 1
S " BN dp
s % 4 s ey, A
-a/2 =-af2 2R + a“ - 2R“cos (9-')
.
. A (88)
’ /gkz + (2b—a)2 - 2&2c00(¢_¢')
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e A AN=ly D+ -y + a
1
= (89)

SR =lr3® + ey)* + (2-0)°

e 2R/102 2 J“{;. 1
4 TE
= ¥, -a/2 /(xy - RY1+1" + R cos (p')2 + (y - R sin q:')2 + a2
- 3 (90)

Joig b nliei® o b e ©')% + (y - R sin 9")2 + (2b-a)°

These four integrals are similar to those encountered in the inductance calculation.
Using the method outlined in Section V already , one can reduce the G's to one-

dimensional integrals. The result of the reduction is

P 2 o o
G, = ﬂ’lr‘:_k)_ rdu(yo- u) 1 = 1
0 2. 2 2 / 2.2 2
0 A+2A)u” + a (1+2)u” + (2b-a)
2 fo
1+A
+ Te': rdv[O(Zyo -v,v)= ¢(v,v)] (91)
0

o
R e :
°og '/2 2 2

R" +a" - 2R2cos u

- L (92) '

v/ZR2 + (gl::-a)2 - 2R2cos u

3

Q
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=
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dy'v(A|y'|,y") ©3)
a/2
g, - }Ze&j dp'¥(R/14A% - R cos ¢' , R sin ¢') ©4)
0
-a/2 ]
with 2
2 ; T
u+ A2 4 o2 + (2b-a)>
and

v/lﬂz /(A}'Q-x)2 + (yo-y)z + (21:.-:;)2 + (1+Az)y° -Ax -y
¥Y(x,y) = 2n 96)

/{+A2 /Qlyo-x)z + (yooy)2 + az + (1+12)y° -Ax -y

For numerical purposes there is no advantage in trying to further reduce the
integrals. They will therefore be left in the present form.

In summary the equivalent capagitance Cd of a circular cable bend of
radius R and angle a 1is given by

Cy = Cl - 2KkR(2A - a) + Kz(El -2 ©7)

d g ey Ny
The G's are evaluated numerically for the typical cases b = 10a and R = 2b
and 4b . The values of Cd are plotted versus a 1in Figure 7. The capacitance
Cé of an abrupt bend (R = 0) is also shown for comparison. It is obvious from

the figure that the abrupt bend is not a good approximation to the smooth bend.

The same conclusion was drawn from inductance consideration.
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X. CONCLUSION

A symmetrical bend in a two-wire transmission line is modeled by a circular
arc of radius R and angle a , as shown in Figures 1 and 2. In the limit as
R tends to zero, one obtains the geometry of an abrupt bend. The equivalent
bend inductance Ld and the equivalent bend capacitance Cd are functions of
four geometrical parameters R, a , a and b , where a is the wire radius
and b 1is one-half the wire separation.

The inductance Ld is calculated exactly within the thin-wire assumption.
The capacitance cd is calculated from a variational principle. Numerical

studies lead to the conclusion that both Ld and Cd depend strongly on the

bend radius R , so that the abrupt bend is not often a realistic model of a
cable bend. '
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